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Abstract. An Aoki–Denner form of the renormalization scheme is suggested for the physical amplitudes in
the minimal supersymmetric standard model. With the more explicit wave-function renormalization, the
scheme is parameterized by the mass of the physical pseudoscalar (MA) and the mass of heavy CP-even
neutral Higgs (MH) instead of the conventional MA, tan β as input. The counterterm of tan β is defined
on mass shell perturbatively just within the Higgs sector. The renormalization of gauge-scalar mixings
are fixed by proper Ward–Takahashi identities. The effect of the reparameterization is also probed to the
radiative correction of the mass of the lightest Higgs.

1 Introduction

In the minimal supersymmetric standard model (MSSM),
the masses and couplings of physical bosons are restricted,
and at tree level, they can be expressed in terms of merely
two free parameters, although supersymmetry (SUSY) is
soft broken[1]. These constraints will no doubt receive
radiative corrections, particularly from loops of the top
quark and its SUSY partners (stops).

If the MSSM is a perturbative theory, as is expected,
some of its qualities at low order should be kept somehow
up to higher order. For example, the effective potential
(EP) approach [2] and the renormalization-group method
(RG) [3], with the use of some tree-level relations, give a
logarithm correction ε ∼ 3GF M4

t sin2 β log(1+m2
t̃
/m2

t )[2]
for estimating the mass of Higgs bosons with good ap-
proximation that can be used in Higgs phenomena[4].

When one considers the momentum dependence of the
full set of Green functions in the Higgs sector, one should
also be able to make a logarithm correction like ε within
the framework of Feynman diagrammatic calculation
(FDC). At the same time, FDC is also requested for the
simulation of the phenomena on present and future col-
liders [5], where we have made searching for the (lightest)
Higgs boson one of the main goals. For the identification
of a Higgs boson found in the Fermi Lab Tevatron, the
CERN large hadron collider (LHC), or next linear col-
lider (NLC), information about its mass is very useful.
Especially for the study of whether the produced Higgs is
a SUSY one, some appropriate SUSY-like [6] simulations
(the hard relations among the SUSY parameters are held
somehow) for its production cross section and decay width
are crucial too.
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Thus, instead of abandoning all the tree-level relations
in the MSSM, one should investigate which of those simple
SUSY constraints can be retained perturbatively in FDC,
as well as study how the other variables can be manipu-
lated loop by loop. With this in mind, we noticed [7,8], in
which were developed renormalization procedures within
the on-mass-shell scheme following [9]. In their representa-
tion, the physical mass of the Higgs boson was acquainted
with the pole position of the renormalized propagator, and
the Higgs phenomena could be predicted systematically
[10]. Recently, even two-loop FDC in a similar direction
to [9] was developed for the prediction of the parameter
ρ = M2

W /(M2
Z cos2 θw) and the mass of Higgs bosons [11].

All these works have already demonstrated the efficacy of
FDC.

Thus in this work we seek for an alternative realiza-
tion motivated by [12] and [13], in which the wave-function
renormalization of mass eigenstate is performed more ex-
plicitly, and in which the gauge-fixing terms are renor-
malized simply, to present a practical option for general
MSSM perturbative calculations. Such a framework has
been established for the two Higgs doublet model (2HDM),
for example in [14]; however, the property of the SUSY al-
lows us to obtain more connections in the radiative correc-
tions and allows us to construct an MSSM version. Similar
considerations have been adopted in [15] for radiative cor-
rections.

In [15,8,7], as well as in other literature [16], tan β,
which is not a physical observable, was chosen as a fun-
damental input of the MSSM; we will refer to this as
the β scheme. In these works, the counterterm of β was
fixed with an MS-like subtraction or fixed in a process-
dependent way involving lengthy calculation of triangle
Feynman diagrams. Since δβ is frequently used in the
MSSM for most FDC, it should be fixed at a definite scale
with an ultraviolet (UV)-finite part, whereas for simplicity
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of the loop calculations, the subtraction should be defined
through a set of two-point one-particle irreducible (1PI)
Green functions but not through the complicated three-
point Green functions.

There is a quite similar situation in the SM, in which
the gauge symmetry has simplified the counterterm of
electric charge δe as a combination of the self-energies of
the gauge bosons. Then the renormalization in our scheme
is a reasonable attempt, replacing tanβ with the mass of
heavy CP-even Higgs MH .

In addition, the mixing of gauge and Higgs bosons will
rise notably, because the MSSM is a gauge theory with
two scalar doublets. The heavy top quark and scalar tops
will in particular contribute a considerable correction to
the mixings that will be necessary for the physical process
involving the CP-odd neutral Higgs or the charged Higgs
bosons. To our knowledge, from the viewpoint of gauge in-
variance, this subject is less discussed as a part of system-
atic MSSM renormalization, although various treatments
have already been adopted in individual cases from the
subtraction of Goldstone propagators. Since the Ward–
Takahashi identities (WTI) play an important role for the
renormalization of gauge field theory, we tried to general-
ize the treatment in [12] to this MSSM case for the coun-
terterms of gauge-scalar mixings.

The present paper is organized as follows. In Sect. 2,
we introduce the conventions and notations for the MSSM.
In Sect. 3, we accomplish the Aoki–Denner form of the
renormalization of the MSSM, including the pole mass of
the lightest CP-even Higgs boson and the on-mass-shell
counterterms of β. In Sect. 4, we give the wave-function
renormalization constants of gauge-scalar mixing terms.
We briefly discuss the application of these formulas in the
last section. Some essential expressions are listed in the
appendices.

2 Tree-level structure
of the MSSM and notations

In the MSSM, the original SU(2)L⊗U(1)Y gauge-invariant
Higgs sector reads,

Lkin = H1D
†
− µDµ

−H1 + H2D
†
+ µDµ

+H2 (2.1)

where Dµ
∓ = ∂µ ∓ (i/2)g1B

µ − ig2T
aW a µ. For low-

energy phenomena, the Higgs sector of the MSSM has a
soft-broken potential with explicit CP conservation,

Vsoft = m2
1H1H1 + m2

2H2H2 − m2
3(εabH

a
1 Hb

2 + h.c.)

+
1
8
g2(H1H1 − H2H2)2 − g2

2

2
|H1H2|2, (2.2)

where m2
3 is defined to be negative and ε12 = −ε21 =

−1, g2 = g2
1 + g2

2 . Now can we clearly count the five pa-
rameters of this model, g1, g2, m

2
1, m

2
2, and m2

3 (where a µ
has been absorbed into m2

1 and m2
2). In the Higgs sector,

this model has fewer parameters than 2HDM, so it should
be more predictive.

Down to the electroweak scale, scalar fields develop
their vacuum expectation value (VEV) v1 6= 0, v2 6= 0 and
mix into mass eigenstates. As the components of Φ1, Φ2 in
[17], the doublets read,

H1 =

(
H1

1

H2
1

)
=

(
(v1 + φ0

1 − iχ0
1)/

√
2

−φ−
1

)
,

H2 =

(
H1

2

H2
2

)
=

(
φ+

2

(v2 + φ0
2 + iχ0

2)/
√

2

)
. (2.3)

Neither v1 nor v2 is an independent new parameter if
we work in the renormalization of the five parameters.
They can be induced as functions of the five parameters
by means of the minimum point of the potential [18]

∂V

∂v1
= 0,

∂V

∂v2
= 0, (all fields ⇒ 0). (2.4)

And v ≡
√

v2
1 + v2

2 gives the mass of gauge bosons simi-
larly to what we have in SM.

Furthermore, we choose the mass of pseudoscalar Higgs
MA and the mass of heavier CP-even neutral Higgs MH as
the input parameters (experiment data expected) for the
Higgs sector. Then other parameters can be represented
by these five independent parameters.

cos2 2β =
M2

H(M2
A + M2

Z − M2
H)

M2
AM2

Z

(2.5)

tan 2α = tan 2β
M2

A + M2
Z

M2
A − M2

Z

, m2
3 = −M2

A sinβ cos β,

v1 = v cos β, v2 = v sinβ (2.6)

A superscript 0 has been omitted in each symbol of an
electric neutral particle. We shall see later that (2.5) and
the first equation of (2.6) can be used to define β and α
loop by loop. At tree level, (2.4) explicitly results in

0 = m2
3v sinβ + v cos β(m2

1 + M2
Z cos 2β/2),

0 = m2
3v cos β + v sinβ(m2

2 − M2
Z cos 2β/2). (2.7)

These equations are based on (2.5, 2.6), and mean that
m2

1, m2
2 can be considered as functions dependent on MA,

MH , MZ , MW , and e. Equations (2.7) will be changed
by loop correction, although they lead to simple tree-level
mass for Higgs bosons, for example,

M2
h =

1
2
[ M2

A + M2
Z − ∆], M2

H+ = M2
A + M2

W , (2.8)

where ∆ =
√

(M2
A + M2

Z)2 − 4M2
ZM2

A cos2 2β.
The gauge-Goldstone mixing terms must be encoun-

tered when the gauge-invariant eigenstates are transformed
into the mass eigenstates. For example, for the Z boson
there is one term Zµ∂µG with a coefficient (v1 cos β +
v2 sinβ)

√
g2
1 + g2

2/2. In the parameterization taken here,
this mixing term becomes

Lmix = −MZZµ∂µG. (2.9)
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Fortunately, this mixing can be canceled at tree level by
the so-called gauge-fixing term

Lgf = − 1
2αz

(∂µZµ + αzMZG)2, (2.10)

which is necessary for the quantization of gauge fields. The
cancellation mechanics is also valid for the W gauge boson
and photon.

Here we have chosen the SM-like gauge-fixing, and in
the following calculations, we will adopt the ’t Hooft–
Feynman gauge, αz = αw = αγ = 1. Finally, the physical
results are gauge-independent.

3 The renormalization procedure
in the scheme

A practical procedure of renormalization is expected when
perturbative calculations are performed. One mediocre
choice is to follow the formulas listed in [14] and to include
the virtual SUSY particles into radiative loops, with the
statement that the tree-level relations are spoiled. How-
ever, another choice in [7,8] has implied that it is not nec-
essary to give up all SUSY relations. As we will see below,
our realization will also reduce the number of independent
counterterms counting on the SUSY potential (2.2) in the
conventions of [12,13]. In principle, the renormalization
in [12,13] is equivalent to the one in [9], although the two
should not be used in a mixed way, so our manipulation
has to be represented from the beginning.

3.1 General framework

Our scheme, as in most cases, defines explicitly the renor-
malization constants of fields, which are just the mass
eigenstates,

W±
µ ⇒ Z

1/2
W W±

µ ,

(
Zµ

Aµ

)
⇒
(

Z
1/2
Z Z

1/2
Zγ

Z
1/2
γZ Z

1/2
γ

)(
Zµ

Aµ

)
,

(
A
G

)
⇒
(

Z
1/2
A Z

1/2
AG

Z
1/2
GA Z

1/2
G

)(
A
G

)
,

(
H
h

)
⇒
(

Z
1/2
H Z

1/2
Hh

Z
1/2
hH Z

1/2
h

)(
H
h

)
. (3.1)

We intend to omit the subscript R (meaning renormal-
ized) unless the renormalized quantity is not equivalent to
the physical one. Here we have not taken the renormaliza-
tion to the gauge eigenstates used in [7] and [8], such as

Hi ⇒ Z
1/2
Hi Hi, Bµ ⇒ Z

1/2
B Bµ,

→
Wµ⇒ Z

1/2
W

→
Wµ,

(ξB,W
1,2 ⇒ 1 + δξB,W

1,2 ), (3.2)

which seem more compact and concise, so we have to seek
an alternative way to treat tadpoles and to define δβ. As

to the input parameters, our scheme prefers the renormal-
ization to the five physical parameters below:

M2
Z ⇒ M2

Z + δM2
Z M2

W ⇒ M2
W + δM2

W

M2
A ⇒ M2

A + δm2
A M2

H ⇒ M2
H + δm2

H

e ⇒ e + δe (3.3)

where MW , MZ are the masses of the gauge bosons and
e is the electric charge of the electron, and these three
are all renormalized with the conventional treatment in
electroweak SM [9,12]:

<e Σ̂Z(k2)|k2=M2
Z

= [ΣZ(k2) − δM2
Z + δZZ(k2 − M2

Z)]k2=M2
Z

= 0

<e Σ̂W (k2)|k2=M2
W

= [ΣW (k2) − δM2
W + δZW (k2 − M2

W )]k2=M2
W

= 0

Γ̂µ
γeē(k

2 = 0, 6 p =6 q = me) = ieγµ (3.4)

The Green function with a hat is the renormalized one.
Regarded as the physical mass of the pseudoscalar (heavy
CP-even neutral) Higgs boson, the MA (MH) in (3.3) fixes
its corresponding counterterm in the same way as the first
one in (3.4); this will be demonstrated later.

In addition to the wave-function renormalization of
the charged Higgs, the renormalization of physical Higgs
masses,

M2
h ⇒ M2

h + δM2
h M2

H+ ⇒ M2
H+ + δM2

H+ , (3.5)

makes the renormalization of 2HDM (including the MSSM)
complete. In the conventional treatment [21,14], (3.5) fixed
the counterterms of Higgs masses, and gave no information
on the value of these masses. However, in the MSSM we
can give an alternative interpretation to (3.5) from which
we can obtain the magnitude of Higgs masses.

3.2 Constraints on mass counterterms

In the MSSM, the mass relations between gauge and Higgs
bosons are connected by (2.7), (2.5), and (2.6). Since the
renormalization should not increase the number of in-
dependent (free) parameters, we have to reproduce the
masses of bosons through the breaking of gauge symmetry
to investigate how those connections can be regulated by
the loop corrections. In other words, the relation between
different counterterms should be determined by these con-
straints. Then the rescaling of the scalar’s VEV (i.e., the
renormalization of those constraints) is of prime impor-
tance. For convenience, we build a generalized form of
(2.7)

Th =
v

8
{[8m2

3 cos β + sinβ(8m2
2 − g2v2 cos 2β)] cos α

−[8m2
3 sinβ + cos β(8m2

1 + g2v2 cos 2β)] sinα}
TH =

v

8
{[8m2

3 sinβ + cos β(8m2
1 + g2v2 cos 2β)] cos α

+[8m2
3 cos β + sinβ(8m2

2 − g2v2 cos 2β)] sinα}.(3.6)
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The v1, v2 should generate properly the masses of gauge
bosons and fall into the last two of (2.6) order by order.
To generate the masses of Higgs bosons, it is convenient
to employ the original coefficient matrices in the bilinear
terms of scalar fields. The matrices (compressed by a fac-
tor of 1/2) have been rotated off gauge basis but their
being identified as the physical masses are not necessary.
for the identification of the physical masses. The most im-
portant one is the mass form of the pseudoscalar A,

MAA = 2[ (−4m2
1 + 4m2

2 − g2v2 cos 2β) cos 2ϑ

+4(m2
1 + m2

2 − 2m2
3 sin 2ϑ) ]/16, (3.7)

which is simply an equation to solve m2
1, m

2
2, and m2

3, cou-
pled with (3.6). It is easy to check from (A.2) in the ap-
pendices that m2

1, m
2
2, m

2
3 return to their tree-level form

(2.7), (2.5), (2.6) only if ϑ ⇒ β, Th ⇒ 0, TH ⇒ 0. Then
the mass matrices (quadratic form) of the Higgs sector can
be recast as functions of e, MW , MZ , MA, M2

H(or tanβ).
These principal parameters (e, MW , MZ , MA, MH) can

run from their bare values to the corresponding renormal-
ized (physical) one, as described in (3.3). When such a
replacement is performed, a natural renormalization con-
dition shows up,

T R
h ≡ Th(eR, MW R, MZR, MAR, MHR) = 0,

T R
H ≡ TH(eR, MW R, MZR, MAR, MHR) = 0. (3.8)

This indicates nothing more than that the physical rescal-
ing of VEV eliminates the linear terms of physical Higgs
fields, so that each renormalized (one-point) Green func-
tion has a tree-level form in renormalized parameters, and
so that viR is just the position where the Higgs potential
reaches its minimum. The reasonable relations

v1δv1+v2δv2 = vδv,
v2

v1

(
δv2

v2
− δv1

v1

)
= sec2 β δβ (3.9)

rather than δv2 = δv1 = δv = 0 have been used in this
scheme. To demonstrate how δβ is traded for δM2

H , we
write the other two transformations,

MAA(e, MW , MZ , MA, MH) ⇒ M2
A + δM2

A ,

MHH(e, MW , MZ , MA, MH)
≡ [(4m2

1 + 4m2
2 + g2v2) + 2(2m2

1 − 2m2
2 + g2v2 cos 2β)

× cos 2α + 2(4m2
3 − g2 sinβ cos β) sin 2α]/8

=
1
2
[
M2

A + M2
Z + ∆

]
+ THH ⇒ MR

HH + {δMHH}

≡ [M2
H + T R

HH

]
+
{[(

1
2

+
∂∆

∂M2
A

)
δM2

A

+
(

1
2

+
∂∆

∂M2
Z

)
δM2

Z +
∂∆

∂β
δβ

]
+ THH

}
=
[
M2

H + T R
HH

]
+
{[

δM2
H

]
+ THH

}
, (3.10)

where THH is a linear combination of Th, TH and T R
HH = 0.

With Th and TH , which are the counterterms of neu-
tral CP-even Higgs tadpoles, equations (3.9,3.7) as well

as equations

Th(e, MW , MZ , MA, MH) ⇒ T R
h + Th = 0 + Th,

TH(e, MW , MZ , MA, MH) ⇒ T R
H + TH = 0 + TH , (3.11)

can induce

MAG(e, MW , MZ , MA, MH)

⇒ [MR
AG] + δMAG

=
[
M2

A (v2 cos ϑ − v1 sinϑ)
v1 cos ϑ + v2 sinϑ

+ T R
AG

]
+ TAG

Mhh(e, MW , MZ , MA, MH)

⇒ M2
hR + T R

hh + [δM2
h + Thh], (3.12)

where M2
hR obeys (2.8), and δMhh is just its variation,

δMhh ≡ δM2
h + Thh = Thh +

(
1
2

− ∂∆

∂M2
A

)
δM2

A

+
(

1
2

− ∂∆

∂M2
Z

)
δM2

Z − ∂∆

∂β
δβ. (3.13)

Here rotational matrices for scalar fields have been de-
fined with different angles, as shown in (A.1). An easy
algebra shows that δϑ (or δϑ+) can be canceled automat-
ically and neatly by δβ, only if β = ϑ = ϑ+ is set in
the coefficients of these counterterms. This pleasing result
implies that in this scheme, the angles for Higgs coupling
to other particles can be kept as only one angle, i.e., β.
In addition, single δβ is sufficient and consistent for any
one-loop calculations.

3.3 M2
hP as the pole mass squared

Combined with the field renormalization in (3.1), the mass
counterterms mentioned above can be fixed by the so-
called on-mass-shell renormalization conditions in the
Higgs sector as follows.
(i) The tadpoles:

0 = T R
h + Th + th, 0 = T R

H + TH + tH . (3.14)

(ii) The heavy neutral CP-even Higgs:

d
dq2 ΣHH(q2)|q2=M2

H
+ ZHH + ZHh = 1

<e Σ̂H(q2)|q2=M2
H

=
[
ΣHH(q2) + (ZH + ZhH)q2] |q2=M2

H

−2Z
1/2
H Z

1/2
Hh δMHh − ZH(MHH + δMHH)

−ZhH(Mhh + δMhh) = 0

<e Σ̂Hh(q2)|q2=M2
H

=
[
ΣHh(q2) +

(
Z

1/2
Hh Z

1/2
H + Z

1/2
h Z

1/2
hH

)
q2
]
|q2=M2

H

−Z
1/2
hH Z

1/2
h (Mhh + δMhh)

−Z
1/2
Hh Z

1/2
H (MHH + δMHH)

−
(
Z

1/2
h Z

1/2
H + Z

1/2
Hh Z

1/2
hH

)
δMHh = 0. (3.15)
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(iii)The light neutral CP-even Higgs:

d
dq2 Σhh(q2) + Zhh + ZhH = 1

<e Σ̂hh(q2)
=
[
Σh(q2) + (Zh + ZHh)q2]− Zh(Mhh + δMhh)

−ZHh(MHH + δMHH) − 2Z
1/2
h Z

1/2
Hh δMHh = 0

<e Σ̂hH(q2)

=
[
ΣHh(q2) +

(
Z

1/2
h Z

1/2
hH + Z

1/2
Hh Z

1/2
H

)
q2
]

−Z
1/2
hH Z

1/2
h (Mhh + δMhh)

−Z
1/2
Hh Z

1/2
H (MHH + δMHH)

−
(
Z

1/2
H Z

1/2
h + Z

1/2
Hh Z

1/2
hH

)
δMHh = 0. (3.16)

The subtraction for the neutral CP-odd Higgs A has the
same form as (3.15) when a field substitution {H, h} ⇒
{G, A} (M2

G = 0) is made. The symbols th, tH , ΣHH ,
Σhh, ΣhH , ΣAA and ΣGA denote the 1PI Green functions
(loop momentum integrals with UV divergence). For the
sector that concerns the selected input parameters, it is
easy to solve:

Th = −th, TH = −tH

δM2
H = ΣHH(M2

H) − THH , δZH = − d
dq2 ΣHH(M2

H)

δZhH =
2[ThH − ΣhH(M2

H)]
M2

H − M2
hR

δM2
A = ΣAA(M2

A), δZA = − d
dq2 ΣAA(M2

A),

δZG = − d
dq2 ΣGG(0)

δZGA =
2[TGA − ΣGA(M2

A)]
M2

A

, (3.17)

in which (3.10) and (3.12) have been used.
It is notable that the variable in ΣHH is the physical

mass M2
H in (3.15), while it is also M2

HR. On the other
hand, the variable of Σhh in (3.16) is not M2

hR but the q2

to solve. The physical (pole) mass of the light Higgs can
be solved as a function of M2

A, M2
H , M2

Z , e. The Taylor
expansion may simplify the analysis and help us to realize
this point.

q2 = M2
hR +

1
2
(q2 − M2

hR)
2 d2

d2q2 Σhh(q2)|q2=M2
hR

+O
((

q2 − M2
hR

)3)
+

1
2
[
δM2

Z + δM2
A − δ∆

]
−Σhh(M2

hR) + Thh (3.18)

The choice q2 = M2
HR in (3.15) makes (3.16) independent

of δ∆ (i.e., δβ) when these two equations are combined
together:

q2 = M2
Z + M2

A − M2
H +

1
2
(q2 − M2

hR)
2 d2

d2q2

×Σhh(q2)|q2=M2
hR

+ O
((

q2 − M2
hR

)3)
− [Σhh

(
M2

hR

)
+ ΣHH

(
M2

H

)]
+
[
δM2

Z + δM2
A

]
+ [Thh + THH ] (3.19)

The d2/(d2q2)Σhh(q2)|q2=M2
hR

term is UV finite unless the
order of divergence in the self-energies of the scalars are
higher than quadratic. Had not the SUSY been broken,
the remaining Σhh(M2

h), ΣHH(M2
H), ΣAA(M2

A), ΣT
ZZ(M2

Z)
and THH , Thh would also be convergent in a superrenor-
malizable theory. Although the breaking of SUSY causes
those tadpoles and self-energies to diverge, we can put for-
ward the question of whether the cancellation will remain
accommodated.

The possibility for the last line in (3.19) to be UV finite
was hinted at in the Appendix E.7 of the second report in
[1] and also was indirectly verified analytically in [19]. Our
combination of self-energies for Zµ, A, H, and h bosons
in (3.19) were employed as the “renormalization of the
neutral Higgs boson mass sum rule” in [15,20].

We have examined it with the top quark and its squarks
in one-loop corrections. We can manifest the UV diver-
gence in these 4 × 7 + 2 × 3 = 36 diagrams to cancel
neatly.

3.4 MH input scheme and the counterterm of β

One may have noticed our using (2.5) for (3.19). This
means we have defined β as an induced variable through
(2.5) perturbatively. This definition requires the validity
of a relation in the MSSM at tree level,

M2
H − M2

Z < M2
A < M2

H . (3.20)

It is known that there is no experiment so far that rules
out such an inequality, although LEP does not prefer an
SM Higgs to be lighter than gauge boson Z [22]. Here, we
think it can be a possible testing point for the MSSM.

There is also no theoretical evaluation that opposes
(3.20). In fact, the M2

HP predicted in the β scheme is des-
tined never to be in conflict with expression (3.20). The
EP [2] performed few numerical evaluations for M2

HP . One
typical numerical evolution in the RG approach can be
found in the first paper of [3], and our (3.20) overlaps
most of the permitted region in its Fig. 4b, when their
R = v2/v1 is larger than 1. Even those recent works that
include stop mixing and RG improvement, for example
[24], cannot definitely contradict the spectrum (3.20). In
these terms [25], our spectrum translates to M2

hP −M2
Z <

ε < M2
hP , which is a natural parameter space. In the pre-

vious FDC evaluations, the figures in [7,23] confirmed the
same spectra when tan β > 1.

Those arguments in the β scheme for the smallness of
δβ are just what we need to support the loop corrections
that will perturb (2.5) mildly enough, so we start utilizing
M2

H directly instead of using β as a fundamental input
parameter: M2

H ≡ M2
HPhys = M2

HR. The measurement of
M2

H may not occur as early as we expect, but its physical
definition is always more unequivocal than the physical
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definition of β itself. (Another attempt to reparameterize
was made in [7]. There, β was replaced by the mass of the
lightest Higgs boson M2

h , which may be measured first.)
The counterterm of M2

H then leads to the one of β
through (2.5),

δβ = ε
δZ (H − A)HA

MZHA

+
δH (A + Z − 2H)AZ + δA (H − Z)HZ

MZHA
, (3.21)

where ε ≡ Sign(v2 − v1). A, H, and Z denote M2
A, M2

H ,
and M2

Z , respectively; δA means δM2
A, and so on, and

MZHA = 4AZ
√

H(H − Z)(H − A)(A + Z − H).(3.22)

It is analogous with the renormalization of the Weinberg
angle in SM. There the radiative corrections do not
frighten one away from defining the counterterm of δθW

by cos2 θW = M2
W /M2

Z even before the discovery of gauge
bosons W and Z.

The renormalization constants of other mixings are ob-
tained as soon as M2

hP is reached:

δZHh = 2
[

ΣHh(M2
hP )

M2
HP − M2

hP

+
THh

(M2
HP − M2

hR)

+
(M2

hP − M2
hR)ΣHh(M2

HP )
(M2

HP − M2
hR)(M2

HP − M2
hP )

]

δZh = − d
dq2 Σhh(q2)|q2=M2

hP
; (3.23)

they are useful for practical manipulation. Similar treat-
ment can be applied to the charged Higgs as listed in the
appendices. The frequently used rotation angle α of CP-
even Higgs is defined in the first of (2.6), and its countert-
erm is

δα =
1
2

csc2 2α

[
2 csc2 2β

M2
Z + M2

A

M2
A − M2

Z

δβ

+2 tan 2β
M2

ZδM2
Z − M2

AδM2
A

(M2
A − M2

Z)2

]
(3.24)

Now, the radiatively corrected tree-level relations are only
(2.8). Even these equations will remain valid unless we in-
sist that M2

hR (M2
H+R) is a physical mass of (charged)

Higgs. The perturbative MSSM permits a chance to cal-
culate the dependence of M2

hP , M2
H+P , β, and α on e, M2

Z ,
M2

W , M2
A, and M2

H , which will be given as input parame-
ters from experiments.

A numerical investigation is given in Sect. 5, where
we will show that the reparameterization β ⇒ M2

H has
not caused any considerable numerical distinction from
other schemes. Now we turn to another important aspect
of MSSM renormalization, the consequence of gauge in-
variance.

4 Renormalization of gauge-Higgs mixing
from WTI

The appropriate renormalization of the gauge-fixing term
(and consequently of gauge-Higgs mixing) should be con-
sistent with the renormalization of VEV (and consequently
of β); we study this carefully below. Following [27] and
[12], we change nothing else but attach a subscription R to
the fields and parameters in (2.10). Then, in our scheme,
the renormalization keeps the form of (2.10) unchanged.
The main reason is that our renormalization procedure on
the classical Lagrangian has already been built to cancel
all the UV divergence in the proper vertices. It is con-
venient to examine this point by an auxiliary generating
functional action [12]

Γ̄ [F, K] = −i log

{∫
[DF (x)] Exp

[
i
∫

dxL(x)eff

]

+J(x)F (x) + K(x)δF (x)

}

+i log
{∫

[DF (x)] Exp
[
i
∫

dzL(z)gf

]}
, (4.1)

where
∫

[DF (x)] denotes the functional integrating of all
the fields F (x), such as vector, scalar, and ghost fields.
δF (x) is the variation of F (x) under the so-called Becchi–
Rouet–Stora–Tyutin (BRST) transformation [26], and
K(x) is the corresponding external source. The contribu-
tion from the BRST transformation term is added to

Leff = Lcl + Lgf + LFP (4.2)

Since there is only quadratic field production in the gauge-
fixing term, the contribution from Lgf in Γ̄ [F, K] will be
made to the physical proper vertices merely within the
inner propagator of loops. So the deduction of Lgf in (4.1)
means that no renormalization substitution is needed for
Lgf within L(x)eff . Further expounding necessitates the
important WTI (strictly speaking, it is the Slavnov–Taylor
identity), which is held in both 2HDM and the MSSM,∫

d4x
δΓ̄

δZν(x)
δΓ̄

δKν
Z(x)

+
δΓ̄

δAν(x)
δΓ̄

δKν
γ (x)

+
δΓ̄

δG(x)
δΓ̄

δKG(x)
+

δΓ̄

δA(x)
δΓ̄

δKA(x)
+

δΓ̄

δCZ(x)
δΓ̄

δKCZ (x)

+
δΓ̄

δCγ(x)
δΓ̄

δKCγ (x)
= 0, (4.3)

where the symbolic F (x) has been embodied as the neutral
vector boson Zµ (photon Aµ or γ) and its corresponding
ghost CZ (Cγ), the neutral unphysical Goldstone G, and
the pseudoscalar A. The Ki(x) is the BRST source cou-
pled to corresponding fields respectively. When the func-
tional differentiates δ2/(δZµ(y1)δCZ(y2)), δ2/(δG(y1)δCZ

(y2)), δ2/(δA(y1)δCZ(y2)), δ2/(δAµ(y1)δCZ(y2)), δ2

/(δAµ(y1)δCγ(y2)), and δ2/(δAµ(y1)δCZ(y2)) are perfor-
med upon (4.3), a set of WTI such as (C.1) are obtained.
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There, Ga
i,j denotes an auxiliary two-point 1PI vertex in

momentum space, and Γ̃ [Ci, Kj ] denotes the Fourier trans-
formation of (δ2Γ̄ )/(δCiδKj). The latter can be calculated
from

δG =
gv

2
CZ − g1

2
[C+G− + C−G+]

+
g

2
CZ [H cos(α − β) − h sin(α − β)]

δA =
g

2
CZ [h cos(α − β) + H sin(α − β)]

−g1

2
[C+H− + C−H+]

δZµ = − ig2
1

g
(W+

µ C− − W−
µ C+) + ∂µCZ

δAµ = − ig1g2

g
(W+

µ C− − W−
µ C+) + ∂µCA. (4.4)

For example, we have

Γ̃ [CZ , Kν
Z ] = kνJ(k2), Γ̃ [CZ , KG] = −iMZI(k2) (4.5)

and so on. It is lucky to find that for most of these physi-
cal vertices Ga

i,j , their coefficient functions usually vanish
at tree level. Those unphysical vertices Γ̃ [Ci, Kj ] can be
eliminated away as they had been treated in [12] even
in higher-order perturbative manipulation. Furthermore,
when the corrections of Ga

i,j are considered merely to one-
loop level, Γ̃ [Ci, Kj ] can be kept at lower order; then the
tree-level form J(k2) = 1, I(k2) = 1 is sufficient for these
equations,

Gµν
ZZkν + Gµ

ZG(−iMZ) = 0, Gν
GZkν + GGG(−iMZ) = 0

Gν
AZkν + GAG(−iMZ) = 0, Gµν

γZkν + Gµ
γG(−iMZ) = 0

Gµν
γZkν = 0, Gν

Aγkν = 0. (4.6)

Except for the third and the sixth, these equations are
recognized just as the ones known in the SM. For exam-
ple, [9]gave similar expressions by means of the generating
functional of the full Green function.

With the definition of the renormalization constants
ZZG, δZAZ , δZγG, and δZAγ from

Ĝµ
ZG = ZZG(−iMZkµ) + Gµ

ZG,

Ĝµ
GZ = ZZG(iMZkµ) + Gµ

GZ

Ĝµ
AZ = δZAZ(iMZkµ) + Gµ

AZ ,

Ĝµ
γG = δZγG(−iMZkµ) + Gµ

γG

Ĝµ
Aγ = δZAγ(iMZkµ) + Gµ

Aγ , (4.7)

the equations in (4.6) can also constrain the renormalized
vertices,

kν

[
(M2

Z + δM2
Z)ZZ

kµkν

k2 + Gµν
ZZ

]
+(−iMZ) [ZZG(−iMZkν) + Gµ

ZG] = 0

kν [ZZG(iMZkν) + Gµ
GZ ] + (−iMZ)[ZGk2 + GGG] = 0

kν [δZZA(iMZkν) + Gµ
AZ ]

+(−iMZ)[Z1/2
GAM2

A + GAG] = 0

kν [(M2
Z + δM2

Z)Z1/2
Z Z

1/2
Zγ

kµkν

k2

+Gµν
Zγ ] + (−iMZ)[δZγG(−iMZkν) + Gµ

γG] = 0

kν [(M2
Z + δM2

Z)ZZγ
kµkν

k2 + Gµν
γZ ] = 0,

kν

[
δZAγ(iMZkν) + Gµ

Aγ

]
= 0 (4.8)

When we contract the first one in (4.8) with a kµ and add
it to the second one which is produced with an iMZ , the
ZZG will be fixed naturally. The last two are the trivial
constraints, which repeat the fact that the propagator of
massless photon is transverse and that Aµ–A mixing is
UV-convergent at one-loop level.

δZZG =
1
2
δZZ +

1
2
δZG +

δM2
Z

2M2
Z

δZAZ =
1
2
δZGA δZγG =

1
2
δZZγ δZγA = 0 (4.9)

We know that it is the proper vertices that go into
physical calculations and that Γ̄ in (4.1) is just the gener-
ating functional of proper vertices if its gauge-fixing term
is restored. When we return the gauge-fixing term to Γ̄ ,
only the unit term in the original gauge-scalar mixing is
canceled, since the gauge-fixing terms are kept unchanged
in this scheme. The true renormalized proper vertex is
given by our scheme,

Γ̂µ
ZG = δZZG(−iMZkν) + Ĝµ

ZG

Γ̂µ
AZ = Ĝµ

AZ , Γ̂µ
γG = Ĝµ

γG. (4.10)

It is worthwhile to notice that the δMAG (the tadpole in
(3.12)) must be included in GAG. Otherwise, the UV diver-
gence in the Zµ–G transition can not be canceled neatly;
this is formally stated by the third of (4.6). Since these
renormalization constants of mixing ought to be inserted
into the amplitude of some physical processes, the tad-
poles should not be dropped away naively; thus they sup-
port our definition of δβ for a UV-finite S Matrix. In such a
way, when the relations of proper vertices are constructed
appropriately, (4.6) guarantees that such a perturbative
definition can make the renormalized Green functions in
the left side of (4.7) be UV-convergent.

For comparison, we perform the renormalization re-
placement up to the linear order of δ listed in (3.1) but
leave Lgf unchanged. After having collected the dimen-
sionless coefficients of the gauge-scalar fixings Zµ∂µG,
Zµ∂µA, Aµ∂µG, and Aµ∂µA, respectively, we find run into
(4.9) again.

Lmix = −MZZµ∂µG

⇒ − (MZ + δMZ)
[
Z

1/2
Z Zµ + Z

1/2
Zγ Aµ

]
×∂µ

[
Z

1/2
GAA + Z

1/2
G G

]
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Fig. 1. A radiatively corrected light CP-even Higgs mass is plotted as a function of MA, tan β varying implicitly from 1.4 (small
MA) to 80 (large MA), with MH fixed. The solid (dashed) lines are for the heavy (light) stops, with µ = 0 (deferent µ marked
for θt̃ = 0), and the thin (thick) lines are for zero (maximal) mixing

= −MZ

[
1
2
δZZ +

1
2
δZG +

δMZ

MZ

]
Zµ∂µG

−MZ

[
1
2
δZGA

]
Zµ∂µA − MZ

[
1
2
δZZγ

]
Aµ∂µG

+0 Aµ∂µA (4.11)

Analogous cases take place for electric charged gauge-
scalar mixing and all other truncated Green functions.
This means simply that the WTI has ensured that the
renormalization with Lgf left out, can cancel all the UV
divergences.

In fact, we could have renormalized Lgf with explicit
renormalization constants like the last line in (3.2). As a
consequence, we would have to seek proper counterterms
for αz [9], so that all these divergences could be canceled
within the Lgf terms. We have not followed such a method,
and we prefer to succeed the inference of the work [28] to
economize on the renormalization of Lgf at the beginning.

5 Discussions and conclusions

When such a systematic renormalization scheme of Higgs
sector and gauge-scalar mixing is completed, the calcu-
lation of the S matrix can be organized in an apparent

and simple way, like in [13] and [15]. Here we just want to
know by which feature and to what extent we can judge
whether the lightest Higgs is of SUSY or not, if it is finally
excited somewhere. Thus (3.19, 3.23,3.21, and 3.24) have
to be employed for a complete simulation. Equation (2.8)
sets the mass of the lightest and the charged Higgs when
they appear as virtual particles in the inner line of loops.
A symbolic M2

hP (M2
H+P ) can save bookkeeping for the

physical mass of the light CP-even (charged) Higgs and
the scheme can undoubtedly also work out their magni-
tudes (the radiative correction to M2

hR or M2
H+R).

After the Taylor expansion in (3.19), the manifestation
of the UV cancellation is straightforward in our analysis
expressions. For it, we use expressions such as cos 2α =
− cos 2β(M2

A−M2
Z)/(M2

H−M2
hR), M2

hR+M2
H = M2

A+M2
Z

and a relation in the stop sector 2Mt(Au + µ cot β) =
(M2

t̃1
− M2

t̃2
) sin 2θt̃ (where θt̃ is the mixing angle between

the left and the right hand stop quarks). However, that
series is not convenient for a numerical solution, so we
iterate q2 near M2

hR using a standard FF package [29]
until our (3.19) is satisfied. In our scheme, the expres-
sion (3.20) means that we can not make a global plot for
MhP against MA (MH) when MH (MA) is fixed. We in-
vestigated the range MA(MH) ∼ 110, 250, 500, 850 GeV
respectively with a top quark mass Mt = 175 GeV as
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shown in Fig. 1. As to the parameters in the stop quark
sector, we prefer to the physical masses of stops and their
mixing angle. We survey both zero (θt̃ = 0) and maximal
(θt̃ = π/4) stop mixing and, moreover, for each value of θt̃
we investigated both light stop spectra (Mt̃1

= 70 Mt̃2
=

230 , just over experiment bound [30]) and heavy spec-
tra (Mt̃1

= 250 Mt̃2
= 850 GeV, near TeV). We also

reproduced the conventional plot in Fig. 2 to show tanβ
dependence through (2.5).

One can still recognize MhP from the profile in our
Fig. 1, although they may seem a little unfamiliar to eyes
accustomed to Fig. 2. The tan β ∼ 1 protrusion near
MA ∼ 350 GeV in Fig. 2, which is the threshold effect of
the virtual particles in the scalar integrals (B0 functions),
can be boxed out if the curves are plotted within a MA

range as small as [8,23]. After the comparison of our Fig. 2
with Fig. 2a in [7], Fig. 1 in [8] with our Fig. 1, and the
figures in [23], one can conclude that the dominant radia-
tive corrections for the lightest Higgs has been acquainted
properly, although a more accurate prediction for its mass
is not reached in this paper, since neither the whole vir-
tual particles nor the two-loop effect were included in our
numerical iteration.

It is indeed well known that there exists a UV-finite
difference in the different renormalization of a parameter.
Nevertheless, the difference for δβ is within the current
order but not in the next order even given the same mass-
shell scheme. We have systematized the renormalization
of fields and parameters into a complete FDC procedure,
which is designed for a simple and consistent amplitudes
calculation with neither EP nor RG, since less junction
means less uncertainty. This realization is also compati-
ble with the taking over of the conventional treatment in
[12,9,13,14] for the renormalization of SM gauge bosons,
fermions, and couplings. If the Higgs and stop sector data
are measured in future experiments, one can make a more
meticulous simulation to test which realization of pertur-
bative expanding will approach fast and fit well. Further-
more, given a possible parameter ∆h (like the ∆r [31] in
SM), (2.5) may hold, even if future experiments give us
an alternative observable with more precision than MH or
MA.

This systematic renormalization for the MSSM neces-
sitates the SUSY partners of the involved virtual particles,
no matter how heavy those partners would be. Otherwise
the UV divergence would be left in the mass of the light
CP-even (charged) Higgs boson or in the physical ampli-
tude in calculations. The decoupling theorem [19,32] still
holds, but in a mode in which a particle has to decouple
with its SUSY partner when UV divergence is needed to
cancel, while a particle will suppress its contribution to the
virtual correction when its mass is much larger than the
energy scale of the physics. If one uses the decoupling theo-
rem in a manner such that all the fields of SUSY partners
are integrated out from the original MSSM Lagrangian,
i.e., one follows the scheme for the 2HDM in [14], then
the price is that the angles β and α and all the masses of
the Higgs bosons have to be input as independent FDC
parameters. Anyway, that 2HDM and this MSSM have
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Fig. 2. A radiatively corrected light CP-even Higgs mass is
plotted against an effective tan β, where a moderate representa-
tive magnitude is adapted randomly for other parameters. (For
example, 50 ∼ MA ∼ 500 GeV, Mt̃1

= 200 Mt̃2
= 500 GeV,

µ = 0). Stops have zero mixing θt̃ = 0 in the upper figure and
get their maximal θt̃ = π/4 in the lower figure

the same gauge structure, so our (4.9,4.10) are still valid
and utilizable.
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A Appendix A: Mass vs. gauge eigenstates
in the MSSM

1. MSSM field representation
The MSSM field representation is(

H
h

)
=
(

cα sα

−sα cα

)(
φ0

1
φ0

2

)
,

(
G
A

)

=
(

cϑ sϑ

−sϑ cϑ

)(
χ0

1
χ0

2

)
,

(
G+

H+

)

=
(

cϑ+ sϑ+

−sϑ+ cϑ+

)(
φ+

1
φ+

2

)
, (A.1)

where cϑ+ = cos ϑ+, sϑ+ = sinϑ+ and so on. At tree level,
ϑ = ϑ+ = β. This renormalization can accommodate even
the renormalized ϑR = ϑR

+ = βR and δϑ = δϑ+ = δβ.

2. m2
i expressed as physical parameters

One can solve m2
1, m2

2, m2
3 as a function of MAA, TH , Th

in the MSSM:

m2
1 = − sec2(β − ϑ){[−16MAA + 2(8MAA + 2g2v2

× cos2(β − ϑ)) cos 2β]/32 − TH cos ϑ[cos(α − β − ϑ)
−2 cos(α + β − ϑ) − cos(α − β + ϑ)]/(2v)
−Th cos ϑ[− sin(α − β − ϑ) + 2 sin(α + β − ϑ)
+ sin(α − β + ϑ)]/(2v)}

m2
2 = sec2(β − ϑ){[16MAA + 2(8MAA + 2g2v2

× cos2(β − ϑ)) cos 2β]/32 + Th sinϑ[cos(α − β − ϑ)
+2 cos(α + β − ϑ) + cos(α − β + ϑ)]/(2v)
+TH sinϑ[sin(α − β − ϑ) + 2 sin(α + β − ϑ)
+ sin(α − β + ϑ)]/(2v)}

m2
3 = sec2(β − ϑ){Th[cos(α + β) + cos(α − β) cos 2ϑ]/(2v)

+TH [cos 2ϑ sin(α − β) + sin(α + β)]/(2v)
−M2

A sin 2β/2}. (A.2)

3. Mass form
Multiplied by a factor of 2, the matrix elements rotated
from the original potential read

MAG = MGA = [8m2
3 cos 2ϑ + (−4m2

1 + 4m2
2 − g2

1v2
1

−g2
2v2

1 + g2
1v2

2 + g2
2v2

2) sin 2ϑ]/4
MGG = [(4m2

1 − 4m2
2 + g2

1v2
1 + g2

2v2
1 − g2

1v2
2 − g2

2v2
2)

× cos 2ϑ + 4(m2
1 + m2

2 + 2m2
3 sin 2ϑ)]/8

Mhh = [4m2
1 + 4m2

2 + g2
1v2

1 + g2
2v2

1 + g2
1v2

2 + g2
2v2

2

−2(2m2
1 − 2m2

2 + g2
1v2

1 + g2
2v2

1 − g2
1v2

2 − g2
2v2

2)
× cos 2α + 2(−4m2

3 + g2
1v1v2 + g2

2v1v2)
× sin 2α]/8

MhH = MHh = [(4m2
3 − (g2

1 + g2
2)v1v2) cos 2α

+(−2m2
1 + 2m2

2 − g2
1v2

1 − g2
2v2

1 + g2
1v2

2 + g2
2v2

2)
× sin 2α]/2

MH+H− = (4m2
1 + 4m2

2 + g2
2v2

1 + g2
2v2

2

+(−4m2
1 + 4m2

2 − g2
1v2

1 + g2
1v2

2) cos 2ϑ+

+2(−4m2
3 + g2

2v1v2) sin 2ϑ+]/4

MH+G− = MG+H− = [2(4m2
3 − g2

2v1v2) cos 2ϑ+

+(−4m2
1 + 4m2

2 − g2
1v2

1 + g2
1v2

2) sin 2ϑ+]/4
MG+G− = (4m2

1 + 4m2
2 + g2

2v2
1 + g2

2v2
2

+(4m2
1 − 4m2

2 + g2
1v2

1 − g2
1v2

2) cos 2ϑ+

+2(4m2
3 − g2

2v1v2) sin 2ϑ+]/4. (A.3)

B Appendix B: Counterterms in the MSSM

1. The counterterms for the combinations of tadpoles are

TAA = 0

THH =
−1
2v

cos(α − β)[−3TH + TH cos 2(α − β)

−Th sin 2(α − β)]

TAG = TGA =
2
v
[Th cos(α − β) + TH sin(α − β)]

TGG =
1
v
[TH cos(α − β) − Th sin(α − β)]

Thh =
−1
2v

sin(α − β)[3Th + Th cos 2(α − β)

+TH sin 2(α − β)]

THh = ThH =
1
2v

[3Th cos(α − β) + Th cos 3(α − β)

−4TH sin3(α − β)]
TH+H− = 0

TH+G− = TG+H− =
2
v
[Th cos(α − β) + TH sin(α − β)]

TG+G− =
2
v
[TH cos(α − β) − Th sin(α − β)]. (B.1)

These tadpole corrections in CP-even neutral Higgs are
different from the ones obtained by others [15,14]. It is
easy to check that our THH + Thh is equal to the bHH +
bhh − bAA in [15], and the aGG in [19]. However, the
Goldstone-Higgs mixing terms are the same, as pointed
in the context, these Goldstone-Higgs tadpole loops must
be included in the corresponding proper vertex.
2. Renormalization for charged Higgs sector
Pole mass and H+G+ mixing to one-loop order can be
written as

ΣH+(q2) + (q2 − M2
H+R)ZH+ − δM2

H+ = 0

δM2
H+ = δM2

A + δM2
Z

ΣH+G+(0) + (0 − M2
H+R

−δM2
H+)Z1/2

H+Z
1/2
H+G+ − TG+H+ = 0

ΣH+G+(q2) + (q2 − M2
H+R − δM2

H+)Z1/2
H+Z

1/2
H+G+

+Z
1/2
G+G+Z

1/2
G+H+q2 − TG+H+ = 0

d
dq2 ΣH+(q2) + ZH+ + ZH+G+ = 1. (B.2)

The third equation restricts the charged Goldstone pole
mass to be zero, and it is helpful to solve δZG+H+ in the
fourth equation, which is more useful for physical pro-
cesses. There is an analogous expression for the neutral
Goldstone, but the δZGA can be calculated independently.
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C Appendix C: Some WTI in the neutral sector
of the MSSM

The following Ward–Takahashi identities hold in the neu-
tral sector of the MSSM:

Gµν
ZZ Γ̃ [CZ , Kν

Z ] + Gµν
Zγ Γ̃ [CZ , Kν

γ ]

+Gµ
ZGΓ̃ [CZ , KG] + Gµ

ZAΓ̃ [CZ , KA] = 0

Gν
GZ Γ̃ [CZ , Kν

Z ] + Gν
Gγ Γ̃ [CZ , Kν

γ ]

+GGGΓ̃ [CZ , KG] + GGAΓ̃ [CZ , KA] = 0

Gν
AZ Γ̃ [CZ , Kν

Z ] + Gν
Aγ Γ̃ [CZ , Kν

γ ]

+GAGΓ̃ [CZ , KG] + GAAΓ̃ [CZ , KA] = 0

Gµν
γZ Γ̃ [CZ , Kν

Z ] + Gµν
γγ Γ̃ [CZ , Kν

γ ]

+Gµ
γGΓ̃ [CZ , KG] + Gµ

γAΓ̃ [CZ , KA] = 0

Gµν
γZ Γ̃ [Cγ , Kν

Z ] + Gµν
γγ Γ̃ [Cγ , Kν

γ ]

+Gµ
γGΓ̃ [Cγ , KG] + Gµ

γAΓ̃ [Cγ , KA] = 0

Gν
AZ Γ̃ [Cγ , Kν

Z ] + Gν
Aγ Γ̃ [Cγ , Kν

γ ]

+GAAΓ̃ [Cγ , KG] + GAAΓ̃ [Cγ , KA] = 0. (C.1)

Similar expressions hold for the charged sector and lead
to the W mixing with scalars,

δZW+G+ =
1
2
δZW +

1
2
δZG+ +

δM2
W

2M2
W

δZW+H+ =
1
2
δZG+H+ . (C.2)
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